Improved NSGA-III using transfer learning and centroid distance for dynamic multi-objective optimization

Author:

Zhang Haijuan,Wang Gai-GeORCID

Abstract

AbstractMulti-objective problems in real world are often contradictory and even change over time. As we know, how to find the changing Pareto front quickly and accurately is challenging during the process of solving dynamic multi-objective optimization problems (DMOPs). In addition, most solutions obey different distributions in decision space and the performance of NSGA-III when dealing with DMOPs should be further improved. In this paper, centroid distance is proposed and combined into NSGA-III with transfer learning together for DMOPs, called TC_NSGAIII. Centroid distance-based strategy is regarded as a prediction method to prevent some inappropriate individuals through measuring the distance of the population centroid and reference points. After the distance strategy, transfer learning is used for generating an initial population using the past experience. To verify the effectiveness of our proposed algorithm, NSGAIII, Tr_NSGAIII (NSGA-III combining with transfer learning only), Ce_NSGAIII (NSGA-III combining with centroid distance only), and TC_NSGAIII are compared. Seven state-of-the-art algorithms have been used for comparison on CEC 2015 benchmarks. Besides, transfer learning and centroid distance are regarded as a dynamic strategy, which is incorporated into three static algorithms, and the performance improvement is measured. What’s more, twelve benchmark functions from CEC 2015 and eight sets of parameters in each function are used in our experiments. The experimental results show that the performance of algorithms can be greatly improved through the proposed approach.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3