RCFT: re-parameterization convolution and feature filter for object tracking

Author:

Wang Yuanyun,Yang Wenhui,Yin Peng,Wang JunORCID

Abstract

AbstractSiamese-based trackers have been widely studied for their high accuracy and speed. Both the feature extraction and feature fusion are two important components in Siamese-based trackers. Siamese-based trackers obtain fine local features by traditional convolution. However, some important channel information and global information are lost when enhancing local features. In the feature fusion process, cross-correlation-based feature fusion between the template and search region feature ignores the global spatial context information and does not make the best of the spatial information. In this paper, to solve the above problem, we design a novel feature extraction sub-network based on batch-free normalization re-parameterization convolution, which scales the features in the channel dimension and increases the receptive field. Richer channel information is obtained and powerful target features are extracted for the feature fusion. Furthermore, we learn a feature fusion network (FFN) based on feature filter. The FFN fuses the template and search region features in a global spatial context to obtain high-quality fused features by enhancing important features and filtering redundant features. By jointly learning the proposed feature extraction sub-network and FFN, the local and global information are fully exploited. Then, we propose a novel tracking algorithm based on the designed feature extraction sub-network and FFN with re-parameterization convolution and feature filter, referred to as RCFT. We evaluate the proposed RCFT tracker and some recent state-of-the-art (SOTA) trackers on OTB100, VOT2018, LaSOT, GOT-10k, UAV123 and the visual-thermal dataset VOT-RGBT2019 datasets, which achieves superior tracking performance with 45 FPS tracking speed.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3