Abstract
AbstractDeep learning demonstrates impressive performance in many medical image analysis tasks. However, its reliability builds on the labeled medical datasets and the assumption of the same distributions between the training data (source domain) and the test data (target domain). Therefore, some unsupervised medical domain adaptation networks transfer knowledge from the source domain with rich labeled data to the target domain with only unlabeled data by learning domain-invariant features. We observe that conventional adversarial-training-based methods focus on the global distributions alignment and may overlook the class-level information, which will lead to negative transfer. In this paper, we attempt to learn the robust features alignment for the cross-domain medical image analysis. Specifically, in addition to a discriminator for alleviating the domain shift, we further introduce an auxiliary classifier to achieve robust features alignment with the class-level information. We first detect the unreliable target samples, which are far from the source distribution via diverse training between two classifiers. Next, a cross-classifier consistency regularization is proposed to align these unreliable samples and the negative transfer can be avoided. In addition, for fully exploiting the knowledge of unlabeled target data, we further propose a within-classifier consistency regularization to improve the robustness of the classifiers in the target domain, which enhances the unreliable target samples detection as well. We demonstrate that our proposed dual-consistency regularizations achieve state-of-the-art performance on multiple medical adaptation tasks in terms of both accuracy and Macro-F1-measure. Extensive ablation studies and visualization results are also presented to verify the effectiveness of each proposed module. For the skin adaptation results, our method outperforms the baseline and the second-best method by around 10 and 4 percentage points. Similarly, for the COVID-19 adaptation task, our model achieves consistently the best performance in terms of both accuracy (96.93%) and Macro-F1 (86.52%).
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence
Reference51 articles.
1. Ahn E, Kumar A, Fulham MJ, Feng D, Kim J (2020) Unsupervised domain adaptation to classify medical images using zero-bias convolutional auto-encoders and context-based feature augmentation. IEEE Trans Med Imaging 39:2385–2394. https://doi.org/10.1109/TMI.2020.2971258
2. Ben-David S, Blitzer J, Crammer K, Kulesza A, Pereira F, Vaughan JW (2010) A theory of learning from different domains. Mach Learn 79:151–175
3. Berthelot D, Carlini N, Cubuk ED, Kurakin A, Sohn K, Zhang H, Raffel C (2020) Remixmatch: Semi-supervised learning with distribution matching and augmentation anchoring. In: 8th International conference on learning representations, ICLR, OpenReview.net. https://openreview.net/forum?id=HklkeR4KPB
4. Bousmalis K, Silberman N, Dohan D, Erhan D, Krishnan D (2017) Unsupervised pixel-level domain adaptation with generative adversarial networks. In: IEEE conference on computer vision and pattern recognition. pp 95–104
5. Bousmalis K, Trigeorgis G, Silberman N, Krishnan D, Erhan D (2016) Domain separation networks. In: Advances in neural information processing systems. pp 343–351
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献