Agent-based modeling and life cycle dynamics of COVID-19-related online collective actions

Author:

Zhang Gang,Li Hao,He Rong,Lu PengORCID

Abstract

AbstractThe outbreak of COVID-19 has greatly threatened global public health and produced social problems, which includes relative online collective actions. Based on the life cycle law, focusing on the life cycle process of COVID-19 online collective actions, we carried out both macro-level analysis (big data mining) and micro-level behaviors (Agent-Based Modeling) on pandemic-related online collective actions. We collected 138 related online events with macro-level big data characteristics, and used Agent-Based Modeling to capture micro-level individual behaviors of netizens. We set two kinds of movable agents, Hots (events) and Netizens (individuals), which behave smartly and autonomously. Based on multiple simulations and parametric traversal, we obtained the optimal parameter solution. Under the optimal solutions, we repeated simulations by ten times, and took the mean values as robust outcomes. Simulation outcomes well match the real big data of life cycle trends, and validity and robustness can be achieved. According to multiple criteria (spans, peaks, ratios, and distributions), the fitness between simulations and real big data has been substantially supported. Therefore, our Agent-Based Modeling well grasps the micro-level mechanisms of real-world individuals (netizens), based on which we can predict individual behaviors of netizens and big data trends of specific online events. Based on our model, it is feasible to model, calculate, and even predict evolutionary dynamics and life cycles trends of online collective actions. It facilitates public administrations and social governance.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference84 articles.

1. World Health Organization (2020) WHO Director-General's Opening Remarks at the Media Briefing on COVID-19—11 March 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19. Accessed 11 Mar 2020

2. Afifi RA, Novak N, Gilbert PA, Pauly B, Abdulrahim S, Rashid SF et al (2020) ‘Most at risk’for COVID19? The imperative to expand the definition from biological to social factors for equity. Prev Med 139:106229

3. World Health Organization (2021) WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/. Accessed 23 June 2021

4. Srivastava Y, Sassaroli E, Swain J, Widom A, Narain M, de Montmollin G (2020) Non-chemical signatures of biological materials: radio signals from Covid19? Electromagn Biol Med 39(4):340–346

5. Raza SS, Seth P, Khan MA (2021) ‘primed’mesenchymal stem cells: a potential novel therapeutic for COVID19 patients. Stem Cell Rev Rep 17(1):153–162

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3