S$$^{2}$$ES: a stationary and scalable knowledge transfer approach for multiagent reinforcement learning

Author:

Wang TonghaoORCID,Peng XingguangORCID,Xu Demin

Abstract

AbstractKnowledge transfer is widely adopted in accelerating multiagent reinforcement learning (MARL). To accelerate the learning speed of MARL for learning-from scratch agents, in this paper, we propose a Stationary and Scalable knowledge transfer approach based on Experience Sharing (S$$^{2}$$ 2 ES). The mainframe of our approach is structured into three components: what kind of experience, how to learn, and when to transfer. Specifically, we first design an augmented form of experience. By sharing (i.e., transmitting) the experience from one agent to its peers, the learning speed can be effectively enhanced with guaranteed scalability. A synchronized learning pattern is then adopted, which reduces the nonstationarity brought by experience replay, and at the same time retains data efficiency. Moreover, to avoid redundant transfer when the agents’ policies have converged, we further design two trigger conditions, one is modified Q value-based and another is normalized Shannon entropy-based, to determine when to conduct experience sharing. Empirical studies indicate that the proposed approach outperforms the other knowledge transfer methods in efficacy, efficiency, and scalability. We also provide ablation experiments to demonstrate the necessity of the key ingredients.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference53 articles.

1. Amir O, Kamar E, Kolobov A, Grosz B (2016) Interactive teaching strategies for agent training. In: Proceedings of the 25th international joint conference on artificial intelligence (IJCAI), pp 804–811

2. Barto AG, Sutton RS, Watkins C (1989) Learning and sequential decision making. University of Massachusetts Amherst, MA

3. Bowling M, Veloso M (2000) An analysis of stochastic game theory for multiagent reinforcement learning. CMU DARPA

4. Cao X, Sun H, Guo L (2020) Potential field hierarchical reinforcement learning approach for target search by multi-AUV in 3-D underwater environments. Int J Control 93(7):1677–1683

5. Carlucho I, De Paula M, Wang S, Petillot Y, Acosta GG (2018) Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning. Robot Auton Syst 107:71–86

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3