Design and analysis of an efficient machine learning based hybrid recommendation system with enhanced density-based spatial clustering for digital e-learning applications

Author:

Bhaskaran S.,Marappan Raja

Abstract

AbstractA decision-making system is one of the most important tools in data mining. The data mining field has become a forum where it is necessary to utilize users' interactions, decision-making processes and overall experience. Nowadays, e-learning is indeed a progressive method to provide online education in long-lasting terms, contrasting to the customary head-to-head process of educating with culture. Through e-learning, an ever-increasing number of learners have profited from different programs. Notwithstanding, the highly assorted variety of the students on the internet presents new difficulties to the conservative one-estimate fit-all learning systems, in which a solitary arrangement of learning assets is specified to the learners. The problems and limitations in well-known recommender systems are much variations in the expected absolute error, consuming more query processing time, and providing less accuracy in the final recommendation. The main objectives of this research are the design and analysis of a new transductive support vector machine-based hybrid personalized hybrid recommender for the machine learning public data sets. The learning experience has been achieved through the habits of the learners. This research designs some of the new strategies that are experimented with to improve the performance of a hybrid recommender. The modified one-source denoising approach is designed to preprocess the learner dataset. The modified anarchic society optimization strategy is designed to improve the performance measurements. The enhanced and generalized sequential pattern strategy is proposed to mine the sequential pattern of learners. The enhanced transductive support vector machine is developed to evaluate the extracted habits and interests. These new strategies analyze the confidential rate of learners and provide the best recommendation to the learners. The proposed generalized model is simulated on public datasets for machine learning such as movies, music, books, food, merchandise, healthcare, dating, scholarly paper, and open university learning recommendation. The experimental analysis concludes that the enhanced clustering strategy discovers clusters that are based on random size. The proposed recommendation strategies achieve better significant performance over the methods in terms of expected absolute error, accuracy, ranking score, recall, and precision measurements. The accuracy of the proposed datasets lies between 82 and 98%. The MAE metric lies between 5 and 19.2% for the simulated public datasets. The simulation results prove the proposed generalized recommender has a great strength to improve the quality and performance.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference34 articles.

1. Masoumi D, Lindström B (2012) Quality in e-learning: a framework for promoting and assuring quality in virtual institutions. J Comput Assist Learn 28(1):27–41

2. Ossiannilsson E, Landgren L (2012) Quality in e-learning—a conceptual framework based on experiences from three international benchmarking projects. J Comput Assist Learn 28(1):42–51

3. Alptekin SE, Karsak EE (2011) An integrated decision framework for evaluating and selecting e-learning products. Appl Soft Comput 11(3):2990–2998

4. Sudhana KM, Raj VC, Suresh RM (2013) An ontology-based framework for context-aware adaptive e-learning system. IEEE Int Conf Comput Commun Inf 2013:1–6

5. Kolekar SV, Sanjeevi SG, Bormane DS (2010) Learning style recognition using artificial neural network for adaptive user interface in e-learning. IEEE Int Conf Comput Commun Inf 2010:1–5

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3