A multi-model assisted differential evolution algorithm for computationally expensive optimization problems

Author:

Yu HaiboORCID,Kang Li,Tan Ying,Zeng Jianchao,Sun Chaoli

Abstract

AbstractSurrogate models are commonly used to reduce the number of required expensive fitness evaluations in optimizing computationally expensive problems. Although many competitive surrogate-assisted evolutionary algorithms have been proposed, it remains a challenging issue to develop an effective model management strategy to address problems with different landscape features under a limited computational budget. This paper adopts a coarse-to-fine evaluation scheme basing on two surrogate models, i.e., a coarse Gaussian process and a fine radial basis function, for assisting a differential evolution algorithm to solve computationally expensive optimization problems. The coarse Gaussian process model is meant to capture the general contour of the fitness landscape to estimate the fitness and its degree of uncertainty. A surrogate-assisted environmental selection strategy is then developed according to the non-dominance relationship between approximated fitness and estimated uncertainty. Meanwhile, the fine radial basis function model aims to learn the details of the local fitness landscape to refine the approximation quality of the new parent population and find the local optima for real-evaluations. The performance and scalability of the proposed method are extensively evaluated on two sets of widely used benchmark problems. Experimental results show that the proposed method can outperform several state-of-the-art algorithms within a limited computational budget.

Funder

National Natural Science Foundation of China

Shanxi Provincial Key Research and Development Project

Shanxi Province Science Foundation for Youths

ShanXi Science and Technology Department

Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3