UCDCN: a nested architecture based on central difference convolution for face anti-spoofing

Author:

Zhang Jing,Guo Quanhao,Wang Xiangzhou,Hao Ruqian,Du Xiaohui,Tao Siying,Liu Juanxiu,Liu LinORCID

Abstract

AbstractThe significance of facial anti-spoofing algorithms in enhancing the security of facial recognition systems cannot be overstated. Current approaches aim to compensate for the model’s shortcomings in capturing spatial information by leveraging spatio-temporal information from multiple frames. However, the additional branches to extract inter-frame details increases the model’s parameter count and computational workload, leading to a decrease in inference efficiency. To address this, we have developed a robust and easily deployable facial anti-spoofing algorithm. In this paper, we propose Central Difference Convolution UNet++ (UCDCN), which takes advantage of central difference convolution and improves the characterization ability of invariant details in diverse environments. Particularly, we leverage domain knowledge from image segmentation and propose a multi-level feature fusion network structure to enhance the model’s ability to capture semantic information which is beneficial for face anti-spoofing tasks. In this manner, UCDCN greatly reduces the number of model parameters as well as achieves satisfactory metrics on three popular benchmarks, i.e., Replay-Attack, Oulu-NPU and SiW.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for Central Universities of the Central South University

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Reference54 articles.

1. Jukka M, Abdenour H, Matti P (2011) Face spoofing detection from single images using micro-texture analysis. In: 2011 international joint conference on Biometrics (IJCB), pages 1–7. IEEE

2. de Freitas Pereira Tiago, Anjos André, De Martino José Mario, Marcel Sébastien (2012) Lbp- top based countermeasure against face spoofing attacks. In: Asian Conference on Computer Vision, pages 121–132. Springer

3. Jukka K, Abdenour H, Matti P (2013) Context based face anti-spoofing. In: 2013 IEEE sixth international conference on biometrics: theory, applications and systems (BTAS), pages 1–8. IEEE

4. Jianwei Y, Zhen L, Shengcai L, Stan LZ (2013) Face liveness detection with component dependent descriptor. In: 2013 International Conference on Biometrics (ICB), pages 1–6. IEEE

5. Zinelabidine B, Jukka K, Abdenour H (2016) Face antispoofing using speeded-up robust features and fisher vector encoding. IEEE Signal Process Lett 24(2):141–145

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3