A hybrid ant lion optimization chicken swarm optimization algorithm for charger placement problem

Author:

Deb Sanchari,Gao Xiao-Zhi

Abstract

AbstractTransportation electrification is known to be a viable alternative to deal with the alarming issues of global warming, air pollution, and energy crisis. Public acceptance of Electric Vehicles (EVs) requires the availability of charging infrastructure. However, the optimal placement of chargers is indeed a complex problem with multiple design variables, objective functions, and constraints. Chargers must be placed with the EV drivers’ convenience and security of the power distribution network being taken into account. The solutions to such an emerging optimization problem are mostly based on metaheuristics. This work proposes a novel metaheuristic considering the hybridization of Chicken Swarm Optimization (CSO) with Ant Lion Optimization (ALO) for effectively and efficiently coping with the charger placement problem. The amalgamation of CSO with ALO can enhance the performance of ALO, thereby preventing it from getting stuck in the local optima. Our hybrid algorithm has the strengths from both CSO and ALO, which is tested on the standard benchmark functions as well as the above charger placement problem. Simulation results demonstrate that it performs moderately better than the counterpart methods.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3