Incomplete multi-view partial multi-label classification via deep semantic structure preservation

Author:

Li Chaoran,Wu Xiyin,Peng Pai,Zhang Zhuhong,Lu Xiaohuan

Abstract

AbstractRecent advances in multi-view multi-label learning are often hampered by the prevalent challenges of incomplete views and missing labels, common in real-world data due to uncertainties in data collection and manual annotation. These challenges restrict the capacity of the model to fully utilize the diverse semantic information of each sample, posing significant barriers to effective learning. Despite substantial scholarly efforts, many existing methods inadequately capture the depth of semantic information, focusing primarily on shallow feature extractions that fail to maintain semantic consistency. To address these shortcomings, we propose a novel Deep semantic structure-preserving (SSP) model that effectively tackles both incomplete views and missing labels. SSP innovatively incorporates a graph constraint learning (GCL) scheme to ensure the preservation of semantic structure throughout the feature extraction process across different views. Additionally, the SSP integrates a pseudo-labeling self-paced learning (PSL) strategy to address the often-overlooked issue of missing labels, enhancing the classification accuracy while preserving the distribution structure of data. The SSP model creates a unified framework that synergistically employs GCL and PSL to maintain the integrity of semantic structural information during both feature extraction and classification phases. Extensive evaluations across five real datasets demonstrate that the SSP method outperforms existing approaches, including lrMMC, MVL-IV, MvEL, iMSF, iMvWL, NAIML, and DD-IMvMLC-net. It effectively mitigates the impacts of data incompleteness and enhances semantic representation fidelity.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3