DFFNet: a lightweight approach for efficient feature-optimized fusion in steel strip surface defect detection

Author:

Hu XianmingORCID,Lin Shouying

Abstract

AbstractSteel surface defect detection is crucial in manufacturing, but achieving high accuracy and real-time performance with limited computing resources is challenging. To address this issue, this paper proposes DFFNet, a lightweight fusion network, for fast and accurate steel surface defect detection. Firstly, a lightweight backbone network called LDD is introduced, utilizing partial convolution to reduce computational complexity and extract spatial features efficiently. Then, PANet is enhanced using the Efficient Feature-Optimized Converged Network and a Feature Enhancement Aggregation Module (FEAM) to improve feature fusion. FEAM combines the Efficient Layer Aggregation Network and reparameterization techniques to extend the receptive field for defect perception, and reduce information loss for small defects. Finally, a WIOU loss function with a dynamic non-monotonic mechanism is designed to improve defect localization in complex scenes. Evaluation results on the NEU-DET dataset demonstrate that the proposed DFFNet achieves competitive accuracy with lower computational complexity, with a detection speed of 101 FPS, meeting real-time performance requirements in industrial settings. Furthermore, experimental results on the PASCAL VOC and MS COCO datasets demonstrate the strong generalization capability of DFFNet for object detection in diverse scenarios.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3