A multi-layer composite identification scheme of cryptographic algorithm based on hybrid random forest and logistic regression model

Author:

Yuan Ke,Huang Yabing,Du Zhanfei,Li JiabaoORCID,Jia Chunfu

Abstract

AbstractCryptographic technology can effectively defend against malicious attackers to attack sensitive and private information. The core of cryptographic technology is cryptographic algorithm, and the cryptographic algorithm identification is the premise of in-depth analysis of cryptography. In the cryptanalysis of unknown cryptographic algorithm, the primary task is to identify the cryptographic algorithm used in the encryption and then carry out targeted analysis. With the rapid growth of Internet data, the increasing complexity of communication environment, and the increasing number of cryptographic algorithms, the single-layer identification scheme of cryptographic algorithm faces great challenges in terms of identification ability and stability. To solve these problems, on the basis of existing identification schemes, this paper proposes a new cluster division scheme CMSSBAM-cluster, and then proposes a multi-layer composite identification scheme of cryptographic algorithm using a composite structure. The scheme adopts the method of cluster division and single division to identify various cryptographic algorithms. Based on the idea of ensemble, the scheme uses the hybrid random forest and logistic regression (HRFLR) model for training, and conducts research on a data set consisting of 1700 ciphertext files encrypted by 17 cryptographic algorithms. In addition, two ensemble learning models, hybrid gradient boosting decision tree and logistic regression (HGBDTLR) model and hybrid k-neighbors and random forest (HKNNRF) model are used as controls to conduct controlled experiments in this paper. The experimental results show that multi-layer composite identification scheme of cryptographic algorithm based on HRFLR model has an accuracy rate close to 100% in the cluster division stage, and the identification results are higher than those of the other two models in both the cluster division and single division stages. In the last layer of cluster division, the identification accuracy of ECB and CBC encryption modes in block cryptosystem is significantly higher than that of the other two classification models by 35.2% and 36.1%. In single division, the identification accuracy is higher than HGBDTLR with a maximum of 9.8%, and higher than HKNNRF with a maximum of 7.5%. At the same time, the scheme proposed in this paper has significantly improved the identification effect compared with the single division identification accuracy of 17 cryptosystem directly and the 17 classification accuracy of 5.9% compared with random classification, which indicates that multi-layer composite identification scheme of cryptographic algorithm based on HRFLR model has significant advantages in the accuracy of identifying multiple cryptographic algorithms.

Funder

Key Technologies Research and Development Program

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Tianjin City

Key Specialized Research and Development Program of Henan Province

Basic Higher Educational Key Scientific Research Program of Henan Province

National Innovation Training Program of University Student

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Cryptographic Data Protection and Machine Learning;Advances in Information Security, Privacy, and Ethics;2024-05-31

2. Enhancing Cryptography Using Regression And Feature Selection;2024 International Conference on Communication, Computing and Internet of Things (IC3IoT);2024-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3