Sentence-level heuristic tree search for long text generation

Author:

Chen ZhengORCID,Liu Zhejun

Abstract

AbstractIn this study, we primarily aim to address the exposure bias issue in long text generation intrinsic to statistical language models. We propose a sentence-level heuristic tree search algorithm, specially tailored for long text generation, to mitigate the problem by managing generated texts in a tree structure and curbing the compounding of biases. Our algorithm utilizes two pre-trained language models, an auto-regressive model for generating new sentences and an auto-encoder model for evaluating sentence quality. These models work in tandem to perform four critical operations: expanding the text tree with new sentences, evaluating the quality of the additions, sampling potential unfinished text fragments for further generation, and pruning leaf nodes deemed unpromising. This iterative process continues until a pre-defined number of [EOS] tokens are produced, at which point we select the highest-scoring completed text as our final output. Moreover, we pioneer two novel token-level decoding techniques—nucleus sampling with temperature and diverse beam search with sampling. These methods, integrated with our sentence-level search algorithm, aim to improve the consistency and diversity of text generation. Experimental results, both automated measures (including Jaccard similarity, Word2vec similarity, and unique word ratio) and human evaluations (assessing consistency, fluency, and rhetorical skills), conclusively demonstrate that our approach considerably enhances the quality of machine-generated long-form text. Through this research, we aim to inspire further innovations in sentence-level search-based text generation algorithms.

Funder

Natural Science Foundation of Sichuan Province

Sichuan Province Science and Technology Support Program

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Reference61 articles.

1. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008

2. Radford A, Narasimhan K, Salimans T, Sutskever I (2018) Improving language understanding by generative pre-training. https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/languageunderstandingpaper.pdf

3. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I (2019) Language models are unsupervised multitask learners. OpenAI Blog 1(8):9

4. Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell, Agarwal S (2020) Language models are few-shot learners. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H (eds) Advances in neural information processing systems, vol 33. Curran Associates, Inc., pp 1877–1901

5. Ippolito D, Duckworth D, Callison-Burch C, Eck D (2020) Automatic detection of generated text is easiest when humans are fooled. In: Proceedings of the 58th annual meeting of the association for computational linguistics, pp 1808–1822

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3