1. Rad M, Lepetit V. Bb8: a scalable, accurate, robust to partial occlusion method for predicting the 3d poses of challenging objects without using depth. Proceedings of the IEEE international conference on computer vision. 3828–3836
2. Kehl W, Manhardt F, Tombari F et al. Ssd-6d: making rgb-based 3d detection and 6d pose estimation great again. Proceedings of the IEEE international conference on computer vision. 1521–1529
3. Xiang Y, Schmidt T, Narayanan V et al (2017) Posecnn: a convolutional neural network for 6d object pose estimation in cluttered scenes. arXiv preprint arXiv:171100199
4. Do T-T, Cai M, Pham T et al (2018) Deep-6dpose: recovering 6d object pose from a single rgb image. arXiv preprint arXiv:180210367
5. He Y, Sun W, Huang H et al. Pvn3d: a deep point-wise 3d keypoints voting network for 6dof pose estimation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 11632–11641