Pose estimation algorithm based on point pair features using PointNet +  +

Author:

Chen YifanORCID,Li Zhenjian,Li Qingdang,Zhang Mingyue

Abstract

AbstractThis study proposes an innovative deep learning algorithm for pose estimation based on point clouds, aimed at addressing the challenges of pose estimation for objects affected by the environment. Previous research on using deep learning for pose estimation has primarily been conducted using RGB-D data. This paper introduces an algorithm that utilizes point cloud data for deep learning-based pose computation. The algorithm builds upon previous work by integrating PointNet +  + technology and the classical Point Pair Features algorithm, achieving accurate pose estimation for objects across different scene scales. Additionally, an adaptive parameter-density clustering method suitable for point clouds is introduced, effectively segmenting clusters in varying point cloud density environments. This resolves the complex issue of parameter determination for density clustering in different point cloud environments and enhances the robustness of clustering. Furthermore, the LineMod dataset is transformed into a point cloud dataset, and experiments are conducted on the transformed dataset to achieve promising results with our algorithm. Finally, experiments under both strong and weak lighting conditions demonstrate the algorithm's robustness.

Funder

Natural Science Foundation of Shandong Province

Taishan Scholar Foundation of Shandong Province

China Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

Reference49 articles.

1. Rad M, Lepetit V. Bb8: a scalable, accurate, robust to partial occlusion method for predicting the 3d poses of challenging objects without using depth. Proceedings of the IEEE international conference on computer vision. 3828–3836

2. Kehl W, Manhardt F, Tombari F et al. Ssd-6d: making rgb-based 3d detection and 6d pose estimation great again. Proceedings of the IEEE international conference on computer vision. 1521–1529

3. Xiang Y, Schmidt T, Narayanan V et al (2017) Posecnn: a convolutional neural network for 6d object pose estimation in cluttered scenes. arXiv preprint arXiv:171100199

4. Do T-T, Cai M, Pham T et al (2018) Deep-6dpose: recovering 6d object pose from a single rgb image. arXiv preprint arXiv:180210367

5. He Y, Sun W, Huang H et al. Pvn3d: a deep point-wise 3d keypoints voting network for 6dof pose estimation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 11632–11641

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3