Abstract
AbstractDeep learning-based bridge crack detection methods have advantages over traditional methods. We proposed an automated bridge crack detection method using lightweight vision models. First, our study applied the You Only Look Once 4th version (YOLO v4) (Bochkovskiy et al. in Yolov4: Optimal speed and accuracy of object detection. arXiv:200410934, 2020) to bridge surface crack detection. Then, to achieve model acceleration, some lightweight networks were used to replace the feature extraction network in YOLO v4, which reduced the parameter numbers and the backbone layers. The lightweight design can reduce the computational overhead of the model, making it convenient to deploy on edge platforms with limited computational power. The experimental results showed that the lightweight network-based bridge crack detection model required significantly less storage space at the expense of a slight reduction in precision. Therefore, an improved YOLO v4 crack detection method was proposed to meet real-time running without sacrificing accuracy. The precision, recall, and F1 score of the proposed crack detection method are 93.96%, 90.12%, and 92%, respectively. And the model only required 23.4 MB of storage space, and its frames per second could reach 140.2 frames. Compared with existing bridge crack detection methods, the proposed method showed precision, speed, and model size advantages.
Funder
Qiankehe platform talents
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献