M-Net: a novel unsupervised domain adaptation framework based on multi-kernel maximum mean discrepancy for fault diagnosis of rotating machinery

Author:

Yu ShihangORCID,Song Limei,Pang Shanchen,Wang Min,He Xiao,Xie Pengfei

Abstract

AbstractThe intelligent fault diagnosis model has made a significant development, whose high-precision results rely on a large amount of labeled data. However, in the actual industrial environment, it is very difficult to obtain a large amount of labeled data. It will make it difficult for the fault diagnosis model to converge with limited labeled industrial data. To address this paradox, we propose a novel unsupervised domain adaptation framework (M-Net) for fault diagnosis of rotating machinery, which only requires unlabeled industrial data. The M-Net will be pretrained using the labeled data, which can be accessed through the labs. In this stage, we propose a multi-scale feature extractor that can extract and fuse multi-scale features. This operation will generalize the features further. Then, we will align the distribution of the labeled data and unlabeled industrial data using the generator model based on multi-kernel maximum mean discrepancy. This will reduce the distribution distance between the labeled data and the unlabeled industrial data. For now, the unsupervised domain adaptation problem has shifted to a semi-supervised domain adaptation problem. The results, obtained through experimental comparison, demonstrate that the M-Net can achieve an accuracy of over 99.99% with labeled data and a maximum transfer accuracy of over 99% with unlabeled industrial data.

Funder

Science and Technology Innovation 2025 Major Project of Ningbo

Taishan Industry Leading Talents

Tianjin Research Innovation Project for Postgraduate Students

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3