Dynamic scheduling for semiconductor manufacturing systems with uncertainties using convolutional neural networks and reinforcement learning

Author:

Liu JuanORCID,Qiao FeiORCID,Zou Minjie,Zinn Jonas,Ma Yumin,Vogel-Heuser Birgit

Abstract

AbstractThe dynamic scheduling problem of semiconductor manufacturing systems (SMSs) is becoming more complicated and challenging due to internal uncertainties and external demand changes. To this end, this paper addresses integrated release control and production scheduling problems with uncertain processing times and urgent orders and proposes a convolutional neural network and asynchronous advanced actor critic-based method (CNN-A3C) that involves a training phase and a deployment phase. In the training phase, actor–critic networks are trained to predict the evaluation of scheduling decisions and to output the optimal scheduling decision. In the deployment phase, the most appropriate release control and scheduling decisions are periodically generated according to the current production status based on the networks. Furthermore, we improve the four key points in the deep reinforcement learning (DRL) algorithm, state space, action space, reward function, and network structure and design four mechanisms: a slide-window-based two-dimensional state perception mechanism, an adaptive reward function that considers multiple objectives and automatically adjusts to dynamic events, a continuous action space based on composite dispatching rules (CDR) and release strategies, and actor–critic networks based on convolutional neural networks (CNNs). To verify the feasibility and effectiveness of the proposed dynamic scheduling method, it is implemented on a simplified SMS. The simulation experimental results show that the proposed method outperforms the unimproved A3C-based method and the common dispatching rules under the new uncertain scenarios.

Funder

national key r &d program of china

National Natural Science Foundation of China

China Scholarship Council

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3