Modeling multiple latent information graph structures via graph convolutional network for aspect-based sentiment analysis

Author:

Wang Jiajun,Li XiaogeORCID,An Xiaochun

Abstract

AbstractAspect-based sentiment analysis (ABSA) aims to determine the sentiment polarity of aspects in a sentence. Recently, graph convolution network (GCN) model combined with attention mechanism has been used for ABSA task over graph structures, achieving promising results. However, these methods of modeling over graph structure fail to consider multiple latent information in the text, i.e., syntax, semantics, context, and so on. In addition, the attention mechanism is vulnerable to noise in sentences. To tackle these problems, in this paper, we construct an efficient text graph and propose a matrix fusion-based graph convolution network (MFLGCN) for ABSA. First, the graph structure is constructed by combining statistics, semantics, and part of speech. Then, we use the sequence model combined with the multi-head self-attention mechanism to obtain the feature representation of the context. Subsequently, the text graph structure and the feature representation of context are fed into GCN to aggregate the information around aspect nodes. The attention matrix is obtained by combining sequence model, GCN and the attention mechanism. Besides, we design a filter layer to alleviate the noise problem in the sentence introduced by the attention mechanism. Finally, in order to make the context representation more effective, attention and filtering matrices are integrated into the model. Experimental results on four public datasets show that our model is more effective than the previous models, demonstrating that using our text graph and matrix fusion can significantly empower ABSA models.

Funder

Key Research and Development Projects of Shaanxi Province

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3