A knowledge-based task planning approach for robot multi-task manipulation

Author:

Zheng Deshuai,Yan Jin,Xue Tao,Liu YongORCID

Abstract

AbstractTask planning is a crucial component in facilitating robot multi-task manipulations. Language-based task planning methods offer practicality in receiving commands from humans in real-life scenarios and require only low-cost labeled data. However, existing methods often rely on sequence models for planning, which primarily focus on mapping language to sequences of sub-tasks while neglecting the knowledge about tasks and objects. To overcome these limitations, we propose a knowledge-based task planning approach called Recurrent Graph Convolutional Network (RGCN). It is devised with a novel structure that combined GCN (Kipf and Welling in International Conference on Learning Representations (ICLR), 2017) and LSTM (Hochreiter and chmidhuber in Neural Comput 9 (8): 1735-1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735) which enables it to leverage knowledge graph data and historical predictions. The experimental results demonstrate that our approach achieves the impressive task planning success rate of $${95.7\%}$$ 95.7 % , surpassing the best baseline method significantly, which achieves $${78.7\%}$$ 78.7 % . Furthermore, we evaluate the performance of multi-task manipulation across a specific set of 20 tasks within a simulated environment. Notably, RGCN combined with pre-trained primitive tasks exhibits the highest success rate compared with state-of-art multi-task learning methods. Our method is proven to be significant for language-conditioned task planning and is qualified for instructing robots for multi-task manipulation.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3