Charging station planning based on the accumulation prospect theory and dynamic user equilibrium

Author:

Heting Qiu,Shuihai Dou,Huayan Shang,Jun Zhang

Abstract

AbstractLarge-scale use of electric vehicles will greatly increase the traffic pressure on urban road network. Therefore, planning of charging stations for electric vehicles considering charging demand and transportation network is particularly important for the coordinated development of electric vehicles and intelligent transportation. Under the condition of bounded rationality, this paper considers such factors as the travel utility perception difference between the users of fuel vehicles and electric vehicles, the time-varying of traffic flow, the location and service level of charging stations. On this basis, combining the cumulative prospect theory, dynamic traffic flow allocation and charging demands, a two-level programming model is established to solve the problem of charging station site selection. The upper layer is a system optimal model, the goal is to minimize the travel time of the network. The lower model describes the time-variability of departure time and the randomness of charging and travel behaviors, establishes the dynamic user equilibrium model and designs the heuristic algorithm. The validity of the model and algorithm is verified by a numerical example. Through the simulation experiment, the optimal location scheme of charging station under different electric vehicle proportion is obtained, and the driving characteristics of two types of vehicles are analyzed. Compared with the traditional model, it is found that the charging station planning considering bounded rationality can achieve higher road network traffic efficiency with fewer charging piles.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Beijing Municipal Commission of Education

Capital University of Economics and Business

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3