A comparative study of many-objective optimizers on large-scale many-objective software clustering problems

Author:

Prajapati Amarjeet

Abstract

AbstractOver the past 2 decades, several multi-objective optimizers (MOOs) have been proposed to address the different aspects of multi-objective optimization problems (MOPs). Unfortunately, it has been observed that many of MOOs experiences performance degradation when applied over MOPs having a large number of decision variables and objective functions. Specially, the performance of MOOs rapidly decreases when the number of decision variables and objective functions increases by more than a hundred and three, respectively. To address the challenges caused by such special case of MOPs, some large-scale multi-objective optimization optimizers (L-MuOOs) and large-scale many-objective optimization optimizers (L-MaOOs) have been developed in the literature. Even after vast development in the direction of L-MuOOs and L-MaOOs, the supremacy of these optimizers has not been tested on real-world optimization problems containing a large number of decision variables and objectives such as large-scale many-objective software clustering problems (L-MaSCPs). In this study, the performance of nine L-MuOOs and L-MaOOs (i.e., S3-CMA-ES, LMOSCO, LSMOF, LMEA, IDMOPSO, ADC-MaOO, NSGA-III, H-RVEA, and DREA) is evaluated and compared over five L-MaSCPs in terms of IGD, Hypervolume, and MQ metrics. The experimentation results show that the S3-CMA-ES and LMOSCO perform better compared to the LSMOF, LMEA, IDMOPSO, ADC-MaOO, NSGA-III, H-RVEA, and DREA in most of the cases. The LSMOF, LMEA, IDMOPSO, ADC-MaOO, NSGA-III, and DREA, are the average performer, and H-RVEA is the worst performer.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3