Abstract
AbstractProbabilistic linguistic term set (PLTS) provides a much more effective model to compute with words and to express the uncertainty in the pervasive natural language by probability information. In this paper, to avoid loss of information, we redefine the classical probabilistic linguistic term sets (PLTSs) by multiple probability distributions from an ambiguity perspective and present some basic operations using Archimedean t-(co)norms. Different from the classical PLTSs, the reformulated PLTSs are not necessarily normalized beforehand for further investigations. Moreover, the multiple probability distributions based PLTSs facilitate the incorporation of the different attitudes of the DMs in their score values and the deviation, and thus the comparisons. Then the Decision-Making Trial and Evaluation Laboratory (DEMATEL) method is extended to the reformulated PLTS frame by incorporating probability information. With these newly developed elements in the reformulated PLTSs, a DEMATEL based multiple attributes decision-making is proposed. The illustrative example and comparison analysis show that the method over the reformulated PLTSs is feasible and valid, and has the advantage in processing without any information loss (i.e., without normalization) and fully exploration of the DMs-preference and knowledge.
Funder
PhD Research Startup Foundation of Nanchang Normal University
Science and Technology Project of Jiangxi Provincial Educational Department of China
Humanities and Social Sciences Projects for Universities in Jiangxi Province of China
Key R&D Project of Jiangxi Provincial Department of Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献