Detection of myocardial infarction using Shannon energy envelope, FA-MVEMD and deterministic learning

Author:

Zeng WeiORCID,Shan Liangmin,Yuan Chengzhi,Du Shaoyi

Abstract

AbstractMyocardial infarction (MI) poses a significant clinical challenge, necessitating expeditious and precise detection to mitigate potentially fatal outcomes. Current MI diagnosis predominantly relies on electrocardiography (ECG); however, it is fraught with limitations, including inter-observer variability and a reliance on expert interpretation. This study introduces an automated MI detection framework that capitalizes on hybrid signal processing methodologies and deterministic learning theory. The initial step involves the extraction of the Shannon energy envelope (SEE) and its derivative from a single-lead ECG. Integration of the SEE into the ECG’s phase portrait provides a means to capture the underlying nonlinear system dynamics. Subsequently, the application of fast and adaptive multivariate empirical mode decomposition (FA-MVEMD) yields discriminative features originating from the most energetically dominant intrinsic mode components (IMFs) within the SEE. Profound dissimilarities are discernible between ECG signals recorded from healthy subjects and those afflicted with MI. In the subsequent phase, deterministic learning theory, implemented through neural networks, is employed to facilitate the classification of ECG signals into two distinct groups. The method’s efficacy is meticulously evaluated using the PTB diagnostic ECG database, resulting in a noteworthy average classification accuracy of 99.21$$\%$$ % within a tenfold cross-validation framework. In summation, the findings affirm that the proposed features not only complement conventional ECG attributes but also align closely with the underlying dynamics of the ECG system, ultimately fortifying the automatic detection of MI. The imperative requirement for early and accurate MI diagnosis is addressed through our approach, offering a robust and dependable means to fulfill this pivotal clinical need.

Funder

Natural Science Foundation of Fujian Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3