Selection of suitable biomass conservation process techniques: a versatile approach to normal wiggly interval-valued hesitant fuzzy set using multi-criteria decision making

Author:

Narayanamoorthy Samayan,Ramya L.,Gunasekaran Angappa,Kalaiselvan Samayan,Kang Daekook

Abstract

AbstractA country that relies on developing industrialization and GDP requires a lot of energy. Biomass is emerging as one of the possible renewable energy resources that may be used to generate energy. Through the proper channels, such as chemical, biochemical, and thermochemical processes, it can be turned into electricity. In the context of India, the potential sources of biomass can be broken down into agricultural waste, tanning waste, sewage, vegetable waste, food, meat waste, and liquor waste. Each form of biomass energy so extracted has advantages and downsides, so determining which one is best is crucial to reaping the most benefits. The selection of biomass conversion methods is especially significant since it requires a careful study of multiple factors, which can be aided by fuzzy multi-criteria decision-making (MCDM) models. This paper proposes the normal wiggly interval-valued hesitant fuzzy-based decision-making trial and evaluation laboratory model (DEMATEL) and the Preference Ranking Organization METHod for Enrichment of Evaluations II (PROMETHEE) for assessing the problem of determining a workable biomass production technique. The proposed framework is used to assess the production processes under consideration based on parameters such as fuel cost, technical cost, environmental safety, and $$CO_2$$ C O 2 emission levels. Bioethanol has been developed as a viable industrial option due to its low carbon footprint and environmental viability. Furthermore, the superiority of the suggested model is demonstrated by comparing the results to other current methodologies. According to comparative study, the suggested framework might be developed to handle complex scenarios with many variables.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermochemical conversion of biomass: Potential future prospects;Renewable and Sustainable Energy Reviews;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3