Weight normalization optimization movie recommendation algorithm based on three-way neural interaction networks

Author:

Liang Zhenlu,Yang ZhishengORCID,Cheng Jingyong

Abstract

AbstractHeterogeneous information networks are increasingly used in recommendation algorithms. However, they lack an explicit representation of meta-paths. In using bidirectional neural interaction models for recommendation models, interaction between users and items is often ignored, with an integral impact on the accuracy of the recommendations. To better apply the interaction information, this study proposes a weight-normalized movie recommendation model (SCLW_MCRec) based on a three-way neural interaction network. The model constructs a three-way neural interaction network $$\langle $$ user, meta-path, item$$\rangle $$ from meta-path contextual information, introducing meta-paths on top of the user-item representation to represent the user-item interaction information. Introduction of a two-layer, one-dimensional convolutional neural network helps capture higher-order interaction features between the user and the item, making the model more powerful in terms of interaction. Adding a dropout layer to the interaction model and using a two-layer convolutional neural network can prevent overfitting and discard irrelevant information features to improve the recommendation. In addition, an extreme cross-entropy loss (argmaxminloss) that incorporates the properties of the argmin and argmax functions is designed to reduce the model loss. A weight-normalization optimization approach is used to better optimize the model and accelerate convergence of the stochastic gradient descent optimization. Compared to current state-of-the-art recommendation models, the SCLW_MCRec model improves the Prec evaluation index by 2.94–35.8%, Recall by 1.15–53.51%, and NDCG by 6.7–49.37% on the MovieLens dataset. The framework provides a significant improvement in recommendation accuracy and also solves the cold-start problem with application of interaction information.

Funder

National Key R &D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3