Abstract
AbstractTo meet the production demand of workshop, this paper proposes an efficient discrete artificial bee colony (DABC) algorithm to solve a new automatic guided vehicle (AGV) scheduling problem with delivery and pickup in a matrix manufacturing workshop. The goal is to produce a AGV transportation solution that minimizes the total cost, including travel cost, time cost, and AGV cost. Therefore, a mixed integer linear programming model is established. To improve the transportation efficiency, a dynamic calculation method is developed. In the DABC algorithm, a heuristic algorithm and a median based probability selection method are used. For improving the quality of the solutions, four effective neighborhood operators are introduced. In the local search, a rule is given to save the operation time and a problem-based search operator is proposed to improve the quality of the best individual. Finally, a series of comparison experiments were implemented with the iterative greedy algorithm, artificial bee colony algorithm, hybrid fruit fly optimization algorithm, discrete artificial bee colony algorithm, improved harmony search, and hybrid genetic-sweep algorithm. The results show that the proposed DABC algorithm has high performance on solving the delivery and pickup problem.
Funder
Innovative Research Group Project of the National Natural Science Foundation of China
Key Laboratory of Microbial Resources and Drug Development in Guizhou Province
Special fund plan for local science and technology development lead by central authority
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献