An environment-driven hybrid evolutionary algorithm for dynamic multi-objective optimization problems

Author:

Chen Meirong,Guo Yinan,Jin Yaochu,Yang Shengxiang,Gong Dunwei,Yu Zekuan

Abstract

AbstractIn dynamic multi-objective optimization problems, the environmental parameters may change over time, which makes the Pareto fronts shifting. To address the issue, a common idea is to track the moving Pareto front once an environmental change occurs. However, it might be hard to obtain the Pareto optimal solutions if the environment changes rapidly. Moreover, it may be costly to implement a new solution. By contrast, robust Pareto optimization over time provides a novel framework to find the robust solutions whose performance is acceptable for more than one environment, which not only saves the computational costs for tracking solutions, but also minimizes the cost for switching solutions. However, neither of the above two approaches can balance between the quality of the obtained non-dominated solutions and the computation cost. To address this issue, environment-driven hybrid dynamic multi-objective evolutionary optimization method is proposed, aiming to fully use strengths of TMO and RPOOT under various characteristics of environmental changes. Two indexes, i.e., the frequency and intensity of environmental changes, are first defined. Then, a criterion is presented based on the characteristics of dynamic environments and the switching cost of solutions, to select an appropriate optimization method in a given environment. The experimental results on a set of dynamic benchmark functions indicate that the proposed hybrid dynamic multi-objective evolutionary optimization method can choose the most rational method that meets the requirements of decision makers, and balance the convergence and robustness of the obtained non-dominated solutions.

Funder

National Natural Science Foundation of China

Permanent Intelligent Technology Co.

Six Talent Peaks Project in Jiangsu Province

Royal Society International Exchanges 2020 Cost Share

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3