A novel twin branch network based on mutual training strategy for ship detection in SAR images

Author:

Lv Yilong,Li Min,He Yujie

Abstract

AbstractThere are inconsistent tasks and insufficient training in the SAR ship detection model, which severely limit the detection performance of the model. Therefore, we propose a twin branch network and design two loss functions: regression reverse convergence loss and classification mutual learning loss. The twin branch network is a simple but effective method containing two components: twin regression network and twin classification network. Aiming at the inconsistencies between training and testing in regression branches, we propose a regression reverse convergence loss (RRC Loss) based on twin regression networks. This loss can make multiple training samples in the twin regression branch converge to the label from the opposite direction. In this way, the test distribution can be closer to the training distribution after processing. For inadequate training in classification branch, Inspired by knowledge distillation, we construct self-knowledge distillation using a twin classification network. Meanwhile, our proposed classification mutual learning loss (CML Loss) enables the twin classification network not only to conduct supervised learning based on the label but also to learn from each other. Experiments on SSDD and HRSID datasets prove that, compared with the original method, the proposed method can improve the AP by 2.7–4.9% based on different backbone networks, and the detection performance is better than other advanced algorithms.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. M-FSDistill: A Feature Map Knowledge Distillation Algorithm for SAR Ship Detection;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3