Deep learning model construction for a semi-supervised classification with feature learning

Author:

Mandapati Sridhar,Kadry Seifedine,Kumar R. Lakshmana,Sutham Krongkarn,Thinnukool OrawitORCID

Abstract

AbstractSeveral deep models were proposed in image processing, data interpretation, speech recognition, and video analysis. Most of these architectures need a massive proportion of training samples and use arbitrary configuration. This paper constructs a deep learning architecture with feature learning. Graph convolution networks (GCNs), semi-supervised learning and graph data representation, have become increasingly popular as cost-effective and efficient methods. Most existing merging node descriptions for node distribution on the graph use stabilised neighbourhood knowledge, typically requiring a significant amount of variables and a high degree of computational complexity. To address these concerns, this research presents DLM-SSC, a unique method semi-supervised node classification tasks that can combine knowledge from multiple neighbourhoods at the same time by integrating high-order convolution and feature learning. This paper employs two function learning techniques for reducing the number of parameters and hidden layers: modified marginal fisher analysis (MMFA) and kernel principal component analysis (KPCA). The MMFA and KPCA weight matrices are modified layer by layer when implementing the DLM, a supervised pretraining technique that doesn't require a lot of information. Free measuring on citation datasets (Citeseer, Pubmed, and Cora) and other data sets demonstrate that the suggested approaches outperform similar algorithms.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3