Abstract
AbstractSeveral deep models were proposed in image processing, data interpretation, speech recognition, and video analysis. Most of these architectures need a massive proportion of training samples and use arbitrary configuration. This paper constructs a deep learning architecture with feature learning. Graph convolution networks (GCNs), semi-supervised learning and graph data representation, have become increasingly popular as cost-effective and efficient methods. Most existing merging node descriptions for node distribution on the graph use stabilised neighbourhood knowledge, typically requiring a significant amount of variables and a high degree of computational complexity. To address these concerns, this research presents DLM-SSC, a unique method semi-supervised node classification tasks that can combine knowledge from multiple neighbourhoods at the same time by integrating high-order convolution and feature learning. This paper employs two function learning techniques for reducing the number of parameters and hidden layers: modified marginal fisher analysis (MMFA) and kernel principal component analysis (KPCA). The MMFA and KPCA weight matrices are modified layer by layer when implementing the DLM, a supervised pretraining technique that doesn't require a lot of information. Free measuring on citation datasets (Citeseer, Pubmed, and Cora) and other data sets demonstrate that the suggested approaches outperform similar algorithms.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献