Actor-critic objective penalty function method: an adaptive strategy for trajectory tracking in autonomous driving

Author:

Wang Bo,Bai FushengORCID,Zhang Ke

Abstract

AbstractTrajectory tracking is a key technology for controlling the autonomous vehicles effectively and stably to track the reference trajectory. How to handle the various constraints in trajectory tracking is very challenging. The recently proposed generalized exterior point method (GEP) shows high computational efficiency and closed-loop performance in solving the constrained trajectory tracking problem. However, the neural networks used in the GEP may suffer from the ill-conditioning issue during model training, which result in a slow or even non-converging training convergence process and the control output of the policy network being suboptimal or even severely constraint-violating. To effectively deal with the large-scale nonlinear state-wise constraints and avoid the ill-conditioning issue, we propose a model-based reinforcement learning (RL) method called the actor-critic objective penalty function method (ACOPFM) for trajectory tracking in autonomous driving. We adopt an integrated decision and control (IDC)-based planning and control scheme to transform the trajectory tracking problem into MPC-based nonlinear programming problems and embed the objective penalty function method into an actor-critic solution framework. The nonlinear programming problem is transformed into an unconstrained optimization problem and employed as a loss function for model updating of the policy network, and the ill-conditioning issue is avoided by alternately performing gradient descent and adaptively adjusting the penalty parameter. The convergence of ACOPFM is proved. The simulation results demonstrate that the ACOPFM converges to the optimal control strategy fast and steadily, and perform well under the multi-lane test scenario.

Funder

Chongqing Science and Technology Commission

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3