Hybrid evolutionary optimization for takeaway order selection and delivery path planning utilizing habit data

Author:

Zhang Min-Xia,Wu Jia-Yu,Wu Xue,Zheng Yu-JunORCID

Abstract

AbstractThe last years have seen a rapid growth of the takeaway delivery market, which has provided a lot of jobs for deliverymen. However, increasing numbers of takeaway orders and the corresponding pickup and service points have made order selection and path planning a key challenging problem to deliverymen. In this paper, we present a problem integrating order selection and delivery path planning for deliverymen, the objective of which is to maximize the revenue per unit time subject to maximum delivery path length, overdue penalty, reward/penalty for large/small number of orders, and high customer scoring reward. Particularly, we consider uncertain order ready time and customer satisfaction level, which are estimated based on historical habit data of stores and customers using a machine-learning approach. To efficiently solve this problem, we propose a hybrid evolutionary algorithm, which adapts the water wave optimization (WWO) metaheuristic to evolve solutions to the main order selection problem and employs tabu search to route the delivery path for each order selection solution. Experimental results on test instances constructed based on real food delivery application data demonstrate the performance advantages of the proposed algorithm compared to a set of popular metaheuristic optimization algorithms.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3