Multilayer Fisher extreme learning machine for classification

Author:

Lai Jie,Wang XiaodanORCID,Xiang Qian,Wang Jian,Lei Lei

Abstract

AbstractAs a special deep learning algorithm, the multilayer extreme learning machine (ML-ELM) has been extensively studied to solve practical problems in recent years. The ML-ELM is constructed from the extreme learning machine autoencoder (ELM-AE), and its generalization performance is affected by the representation learning of the ELM-AE. However, given label information, the unsupervised learning of the ELM-AE is difficult to build the discriminative feature space for classification tasks. To address this problem, a novel Fisher extreme learning machine autoencoder (FELM-AE) is proposed and is used as the component for the multilayer Fisher extreme leaning machine (ML-FELM). The FELM-AE introduces the Fisher criterion into the ELM-AE by adding the Fisher regularization term to the objective function, aiming to maximize the between-class distance and minimize the within-class distance of abstract feature. Different from the ELM-AE, the FELM-AE requires class labels to calculate the Fisher regularization loss, so that the learned abstract feature contains sufficient category information to complete classification tasks. The ML-FELM stacks the FELM-AE to extract feature and adopts the extreme leaning machine (ELM) to classify samples. Experiments on benchmark datasets show that the abstract feature extracted by the FELM-AE is more discriminative than the ELM-AE, and the classification results of the ML-FELM are more competitive and robust in comparison with the ELM, one-dimensional convolutional neural network (1D-CNN), ML-ELM, denoising multilayer extreme learning machine (D-ML-ELM), multilayer generalized extreme learning machine (ML-GELM), and hierarchical extreme learning machine with L21‑norm loss and regularization (H-LR21-ELM).

Funder

The National Natural Science Foundation of China

The Natural Science Basic Research Program of Shaanxi Province

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3