Abstract
AbstractThe 5G IoT is very complicated and there are many factors that affect the network performance. Presently, the optimization of network is still the focus of research. Although the existing literature has done a large number of researches in this aspect, there have always been problems, such as complex algorithms. Based on the previous research, we propose a big data mining analysis method, which improves the comprehensive performance of the network by analyzing the relationship of massive data variables so as to optimize the combination of the network. In this paper, according to each of terminal variables at any moment such as power consumption, bandwidth, noise power, subcarrier bandwidth, interference power and coding efficiency, etc. we develop the mathematical modeling of principal component multiple regression. Then we simulate this scheme by edge computing technology and combine it with intelligent algorithms. The research results show that this method can effectively predict the data concerned, and the residual is the smallest. Therefore, the research provides an important basic for application of the approach to the mobile edge network optimization of IoTs.
Funder
the research start-up fund of Dr
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献