An enhanced chimp optimization algorithm for continuous optimization domains

Author:

Jia Heming,Sun KangjianORCID,Zhang Wanying,Leng Xin

Abstract

AbstractChimp optimization algorithm (ChOA) is a recently proposed metaheuristic. Interestingly, it simulates the social status relationship and hunting behavior of chimps. Due to the more flexible and complex application fields, researchers have higher requirements for native algorithms. In this paper, an enhanced chimp optimization algorithm (EChOA) is proposed to improve the accuracy of solutions. First, the highly disruptive polynomial mutation is used to initialize the population, which provides the foundation for global search. Next, Spearman’s rank correlation coefficient of the chimps with the lowest social status is calculated with respect to the leader chimp. To reduce the probability of falling into the local optimum, the beetle antennae operator is used to improve the less fit chimps while gaining visual capability. Three strategies enhance the exploration and exploitation of the native algorithm. To verify the function optimization performance, EChOA is comprehensively analyzed on 12 classical benchmark functions and 15 CEC2017 benchmark functions. Besides, the practicability of EChOA is also highlighted by three engineering design problems and training multilayer perceptron. Compared with ChOA and five state-of-the-art algorithms, the statistical results show that EChOA has strong competitive capabilities and promising prospects.

Funder

Sanming University introduces high-level talents to start scientific research funding support project

Guiding science and technology projects in Sanming City

Educational research projects of young and middle-aged teachers in Fujian Province

Scientific research and development fund of Sanming University

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3