An instance-based deep transfer learning method for quality identification of Longjing tea from multiple geographical origins

Author:

Zhang ChengORCID,Wang JinORCID,Yan Ting,Lu Xiaohui,Lu Guodong,Tang Xiaolin,Huang Bincheng

Abstract

AbstractFor practitioners, it is very crucial to realize accurate and automatic vision-based quality identification of Longjing tea. Due to the high similarity between classes, the classification accuracy of traditional image processing combined with machine learning algorithm is not satisfactory. High-performance deep learning methods require large amounts of annotated data, but collecting and labeling massive amounts of data is very time consuming and monotonous. To gain as much useful knowledge as possible from related tasks, an instance-based deep transfer learning method for the quality identification of Longjing tea is proposed. The method mainly consists of two steps: (i) The MobileNet V2 model is trained using the hybrid training dataset containing all labeled samples from source and target domains. The trained MobileNet V2 model is used as a feature extractor, and (ii) the extracted features are input into the proposed multiclass TrAdaBoost algorithm for training and identification. Longjing tea images from three geographical origins, West Lake, Qiantang, and Yuezhou, are collected, and the tea from each geographical origin contains four grades. The Longjing tea from West Lake is regarded as the source domain, which contains more labeled samples. The Longjing tea from the other two geographical origins contains only limited labeled samples, which are regarded as the target domain. Comparative experimental results show that the method with the best performance is the MobileNet V2 feature extractor trained with a hybrid training dataset combined with multiclass TrAdaBoost with linear support vector machine (SVM). The overall Longjing tea quality identification accuracy is 93.6% and 91.5% on the two target domain datasets, respectively. The proposed method can achieve accurate quality identification of Longjing tea with limited samples. It can provide some heuristics for designing image-based tea quality identification systems.

Funder

Key R&D Program of Zhejiang Province

Robotics Institute of Zhejiang University

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3