Polynomial Response Surface based on basis function selection by multitask optimization and ensemble modeling

Author:

Zhao Yong,Ye SiyuORCID,Chen Xianqi,Xia Yufeng,Zheng Xiaohu

Abstract

AbstractPolynomial Regression Surface (PRS) is a commonly used surrogate model for its simplicity, good interpretability, and computational efficiency. The performance of PRS is largely dependent on its basis functions. With limited samples, how to correctly select basis functions remains a challenging problem. To improve prediction accuracy, a PRS modeling approach based on multitask optimization and ensemble modeling (PRS-MOEM) is proposed for rational basis function selection with robustness. First, the training set is partitioned into multiple subsets by the cross validation method, and for each subset a sub-model is independently constructed by optimization. To effectively solve these multiple optimization tasks, an improved evolutionary algorithm with transfer migration is developed, which can enhance the optimization efficiency and robustness by useful information exchange between these similar optimization tasks. Second, a novel ensemble method is proposed to integrate the multiple sub-models into the final model. The significance of each basis function is scored according to the error estimation of the sub-models and the occurrence frequency of the basis functions in all the sub-models. Then the basis functions are ranked and selected based on the bias-corrected Akaike’s information criterion. PRS-MOEM can effectively mitigate the negative influence from the sub-models with large prediction error, and alleviate the uncertain impact resulting from the randomness of training subsets. Thus the basis function selection accuracy and robustness can be enhanced. Seven numerical examples and an engineering problem are utilized to test and verify the effectiveness of PRS-MOEM.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3