Hall effect on MHD Jeffrey fluid flow with Cattaneo–Christov heat flux model: an application of stochastic neural computing

Author:

Awais Muhammad,Rehman Huma,Raja Muhammad Asif ZahoorORCID,Awan Saeed Ehsan,Ali Aamir,Shoaib Muhammad,Malik Muhammad Yousaf

Abstract

AbstractExploration and exploitation of intelligent computing infrastructures are becoming of great interest for the research community to investigate different fields of science and engineering offering new improved versions of problem-solving soft computing-based methodologies. The current investigation presents a novel artificial neural network-based solution methodology for the presented problem addressing the properties of Hall current on magneto hydrodynamics (MHD) flow with Jeffery fluid towards a nonlinear stretchable sheet with thickness variation. Generalized heat flux characteristics employing Cattaneo–Christov heat flux model (CCHFM) along with modified Ohms law have been studied. The modelled PDEs are reduced into a dimensionless set of ODEs by introducing appropriate transformations. The temperature and velocity profiles of the fluid are examined numerically with the help of the Adam Bashforth method for different values of physical parameters to study the Hall current with Jeffrey fluid and CCHFM. The examination of the nonlinear input–output with neural network for numerical results is also conducted for the obtained dataset of the system by using Levenberg Marquardt backpropagated networks. The value of Skin friction coefficient, Reynold number, Deborah number, Nusselt number, local wall friction factors and local heat flux are calculated and interpreted for different parameters to have better insight into flow dynamics. The precision level is examined exhaustively by mean square error, error histograms, training states information, regression and fitting plots. Moreover, the performance of the designed solver is certified by mean square error-based learning curves, regression metrics and error histogram analysis. Several significant results for Deborah number, Hall parameters and magnetic field parameters have been presented in graphical and tabular form.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3