Temporal network embedding using graph attention network

Author:

Mohan AnurajORCID,Pramod K V

Abstract

AbstractGraph convolutional network (GCN) has made remarkable progress in learning good representations from graph-structured data. The layer-wise propagation rule of conventional GCN is designed in such a way that the feature aggregation at each node depends on the features of the one-hop neighbouring nodes. Adding an attention layer over the GCN can allow the network to provide different importance within various one-hop neighbours. These methods can capture the properties of static network, but is not well suited to capture the temporal patterns in time-varying networks. In this work, we propose a temporal graph attention network (TempGAN), where the aim is to learn representations from continuous-time temporal network by preserving the temporal proximity between nodes of the network. First, we perform a temporal walk over the network to generate a positive pointwise mutual information matrix (PPMI) which denote the temporal correlation between the nodes. Furthermore, we design a TempGAN architecture which uses both adjacency and PPMI information to generate node embeddings from temporal network. Finally, we conduct link prediction experiments by designing a TempGAN autoencoder to evaluate the quality of the embedding generated, and the results are compared with other state-of-the-art methods.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3