Cloud-based email phishing attack using machine and deep learning algorithm

Author:

Butt Umer Ahmed,Amin RashidORCID,Aldabbas Hamza,Mohan Senthilkumar,Alouffi Bader,Ahmadian Ali

Abstract

AbstractCloud computing refers to the on-demand availability of personal computer system assets, specifically data storage and processing power, without the client's input. Emails are commonly used to send and receive data for individuals or groups. Financial data, credit reports, and other sensitive data are often sent via the Internet. Phishing is a fraudster's technique used to get sensitive data from users by seeming to come from trusted sources. The sender can persuade you to give secret data by misdirecting in a phished email. The main problem is email phishing attacks while sending and receiving the email. The attacker sends spam data using email and receives your data when you open and read the email. In recent years, it has been a big problem for everyone. This paper uses different legitimate and phishing data sizes, detects new emails, and uses different features and algorithms for classification. A modified dataset is created after measuring the existing approaches. We created a feature extracted comma-separated values (CSV) file and label file, applied the support vector machine (SVM), Naive Bayes (NB), and long short-term memory (LSTM) algorithm. This experimentation considers the recognition of a phished email as a classification issue. According to the comparison and implementation, SVM, NB and LSTM performance is better and more accurate to detect email phishing attacks. The classification of email attacks using SVM, NB, and LSTM classifiers achieve the highest accuracy of 99.62%, 97% and 98%, respectively.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3