Multi-objective fault-tolerant optimization algorithm for deployment of IoT applications on fog computing infrastructure

Author:

Ramzanpoor Yaser,Hosseini Shirvani Mirsaeid,Golsorkhtabaramiri Mehdi

Abstract

AbstractNowadays, fog computing as a complementary facility of cloud computing has attracted great attentions in research communities because it has extraordinary potential to provide resources and processing services requested for applications at the edge network near to users. Recent researchers focus on how efficiently engage edge networks capabilities for execution and supporting of IoT applications and associated requirement. However, inefficient deployment of applications’ components on fog computing infrastructure results bandwidth and resource wastage, maximum power consumption, and unpleasant quality of service (QoS) level. This paper considers reduction of bandwidth wastage in regards to application components dependency in their distributed deployment. On the other hand, the service reliability is declined if an application’s components are deployed on a single node for the sake of power consumption management viewpoint. Therefore, a mechanism for tackling single point of failure and application reliability enhancement against failure are presented. Then, the components deployment is formulated to a multi-objective optimization problem with minimization perspective of both power consumption and total latency between each pair of components associated to applications. To solve this combinatorial optimization problem, a multi-objective cuckoo search algorithm (MOCSA) is presented. To validate the work, this algorithm is assessed in different conditions against some state-of the arts. The simulation results prove the amount 42%, 29%, 46%, 13%, and 5% improvement of proposed MOCSA in terms of average overall latency respectively against MOGWO, MOGWO-I, MOPSO, MOBA, and NSGA-II algorithms. Also, in term of average total power consumption the improvement is about 43%, 28%, 41%, 30%, and 32% respectively.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3