Ssleepnet: a structured sleep network for sleep staging based on sleep apnea severity

Author:

Lv Xingfeng,Ma Jun,Li Jinbao,Ren Qianqian

Abstract

AbstractSleep stage classification is essential in evaluating sleep quality. Sleep disorders disrupt the periodicity of sleep stages, especially the common obstructive sleep apnea (OSA). Many methods only consider how to effectively extract features from physiological signals to classify sleep stages, ignoring the impact of OSA on sleep staging. We propose a structured sleep staging network (SSleepNet) based on OSA to solve the above problem. This research focused on the effect of sleep apnea patients with different severity on sleep staging performance and how to reduce this effect. Considering that the transfer relationship between sleep stages of OSA subjects is different, SSleepNet learns comprehensive features and transfer relationships to improve the sleep staging performance. First, the network uses the multi-scale feature extraction (MSFE) module to learn rich features. Second, the network uses a structured learning module (SLM) to understand the transfer relationship between sleep stages, reducing the impact of OSA on sleep stages and making the network more universal. We validate the model on two datasets. The experimental results show that the detection accuracy can reach 84.6% on the Sleep-EDF-2013 dataset. The detection accuracy decreased slightly with the increase of OSA severity on the Sleep Heart Health Study (SHHS) dataset. The accuracy of healthy subjects to severe OSA subjects ranged from 79.8 to 78.4%, with a difference of only 1.4%. It shows that the SSleepNet can perform better sleep staging for healthy and OSA subjects.

Funder

National Natural Science Foundation of China

Key Technology Research and Development Program of China

Natural Science Foundation of Heilongjiang Province

Harbin science and technology bureau innovation

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of automated sleep stage based on EEG signals;Biocybernetics and Biomedical Engineering;2024-07

2. Machine learning-empowered sleep staging classification using multi-modality signals;BMC Medical Informatics and Decision Making;2024-05-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3