Monocular tissue reconstruction via remote center motion for robot-assisted minimally invasive surgery

Author:

Li PengORCID,Tang Ming,Ding Ke,Wu Xiaojun,Liu Yunhui

Abstract

AbstractIn minimally invasive surgery, the primary surgeon requires an assistant to hold an endoscope to obtain visual information from the body cavity. However, the two-dimensional images acquired by endoscopy lack depth information. Future automatic robotic surgeries need three-dimensional information of the target area. This paper presents a method to reconstruct a 3D model of soft tissues from image sequences acquired from a robotic camera holder. In this algorithm, a sparse reconstruction module based on the SIFT and SURF features is designed, and a multilevel feature matching strategy is proposed to improve the algorithm efficiency. To recover the realistic effect of the soft-tissue model, a complete 3D reconstruction algorithm is implemented, including densification, meshing of the point cloud and texture mapping reconstruction. During the texture reconstruction stage, a mathematical model is proposed to achieve the repair of texture seams. To verify the feasibility of the proposed method, we use a collaborative manipulator (AUBO i5) with a mounted camera to mimic an assistant surgeon holding an endoscope. To satisfy a pivotal constraint imposed by the remote center of motion (RCM), a kinematic algorithm of the manipulator is implemented, and the primary surgeon is provided with a voice control interface to control the directions of the camera with. We conducted an experiment to show a 3D reconstruction of soft tissue by the proposed method and the manipulator, which indicates that the manipulator works as a robotic assistant which can hold a camera to provide abundant information in the surgery.

Funder

Natural Science Foundation of China

National Natural Science Foundation of China-Shenzhen Joint Fund

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3