Anomaly detection for high-dimensional space using deep hypersphere fused with probability approach

Author:

Zheng JianORCID,Li Jingyi,Liu Cong,Wang Jianfeng,Li Jiang,Liu Hongling

Abstract

AbstractData distribution presents sparsity in a high-dimensional space, thus difficulty affording sufficient information to distinguish anomalies from normal instances. Moreover, a high-dimensional space may exist many subspaces, obviously, anomalies can exist in any subspaces. This also creates trouble for anomaly mining. Consequently, it is a challenge for anomaly mining in a high-dimensional space. To address this, here proposed a deep hypersphere method fused with probabilistic approach for anomaly mining. In the proposed method, the deep neural network is used as a feature extractor to capture those layered low-dimensional features from the data lying in a high-dimensional space. To promote the ability of the deep neural network to capture these features, the probability approach of sample binary-classification is fused into the loss function, thereby forming the probability deep neural network Then, the hypersphere is used as an anomalous detector. In the low-dimensional features extracted by the deep neural network, the anomalous detector separates anomaly features from normal features. Finally, experimental results on synthetic and real-world data sets show that the proposed method not only outperforms the state-of-the-art methods in the precision of mined anomalies, but also this hybrid method consisting of deep neural networks and traditional detection methods has outstanding capabilities of mining high-dimensional anomalies. We find that deep neural networks fusing the probabilistic method of sample multi-classification can capture these desired low-dimensional features; moreover, these captured low-dimensional features present more obvious layered characteristics. We also demonstrate that as long as these captured features represent a fewer anomaly instances, it can sufficiently identify anomalies from normal instances.

Funder

Chongqing Youth Science and Technology Talent Training Project

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3