Machine learning based customer sentiment analysis for recommending shoppers, shops based on customers’ review

Author:

Yi ShanshanORCID,Liu Xiaofang

Abstract

AbstractBig data analytics plays a major role in various industries using computing applications such as E-commerce and real-time shopping. Big data are used for promoting products and provide better connectivity between retailers and shoppers. Nowadays, people always use online promotions to know about best shops for buying better products. This shopping experience and opinion about the shopper’s shop can be observed by the customer-experience shared across social media platforms. A new customer when searching a shop needs information about manufacturing date (MRD) and manufacturing price (MRP), offers, quality, and suggestions which can only be provided by the previous customer experience. The MRP and MRD are already available in the product cover or label. Several approaches have been used for predicting the product details but not providing accurate information. This paper is motivated towards applying Machine Learning algorithms for learning, analysing and classifying the product information and the shop information based on the customer experience. The product data with customer reviews is collected from benchmark Unified computing system (UCS) which is a server for data based computer product lined up for evaluating hardware, support to visualization, software management. From the results and comparison, it has been found that machine learning algorithms outperform than other approaches. The proposed HRS system has higher values of MAPE which is 96% and accuracy is nearly 98% when compared to other existing techniques. Mean absolute error of proposed HRS system is nearly 0.6 which states that the performance of the system is significantly effective.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comprehensive review and comparative analysis of transformer models in sentiment analysis;Knowledge and Information Systems;2024-09-06

2. Sequentially epitaxial multi-shelled Mn-based Prussian blue cathode for highly stable sodium-ions batteries;Energy Storage Materials;2024-05

3. A Comprehensive Survey on Sentimental Analysis using Classification Techniques;International Journal of Advanced Research in Science, Communication and Technology;2024-04-28

4. Hamiltonian deep neural network fostered sentiment analysis approach on product reviews;Signal, Image and Video Processing;2024-02-29

5. Machine Learning and Sentiments Analysis;Advances in Business Information Systems and Analytics;2024-01-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3