BPLC + NOSO: backpropagation of errors based on latency code with neurons that only spike once at most

Author:

Jin Seong Min,Kim Dohun,Yoo Dong Hyung,Eshraghian Jason,Jeong Doo SeokORCID

Abstract

AbstractFor mathematical completeness, we propose an error-backpropagation algorithm based on latency code (BPLC) with spiking neurons conforming to the spike–response model but allowed to spike once at most (NOSOs). BPLC is based on gradients derived without approximation unlike previous temporal code-based error-backpropagation algorithms. The latency code uses the spiking latency (period from the first input spike to spiking) as a measure of neuronal activity. To support the latency code, we introduce a minimum-latency pooling layer that passes the spike of the minimum latency only for a given patch. We also introduce a symmetric dual threshold for spiking (i) to avoid the dead neuron issue and (ii) to confine a potential distribution to the range between the symmetric thresholds. Given that the number of spikes (rather than timesteps) is the major cause of inference delay for digital neuromorphic hardware, NOSONets trained using BPLC likely reduce inference delay significantly. To identify the feasibility of BPLC + NOSO, we trained CNN-based NOSONets on Fashion-MNIST and CIFAR-10. The classification accuracy on CIFAR-10 exceeds the state-of-the-art result from an SNN of the same depth and width by approximately 2%. Additionally, the number of spikes for inference is significantly reduced (by approximately one order of magnitude), highlighting a significant reduction in inference delay.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3