Predicting popularity trend in social media networks with multi-layer temporal graph neural networks

Author:

Jin Ruidong,Liu XinORCID,Murata TsuyoshiORCID

Abstract

AbstractPredicting what becomes popular on social media is crucial because it helps us understand future topics and public interests based on massive social data. Previous studies mainly focused on picking specific features and checking past statistic numbers, ignoring the hidden impact of messages passing along the complex relationships among different entities. People talk and connect with others on social media; thus, it is essential to consider how information spreads when studying social media networks. This work proposes a multi-layer temporal graph neural network (GNN) framework for predicting what will be popular on social media networks. This framework takes into account the way information spreads among different entities. The proposed method involves multi-layer relations and temporal information within a sequence of social media network snapshots. It learns the temporal representations of target entities in each snapshot and predicts how the popularity of a particular entity will change in future snapshots. The proposed method is evaluated with real-world data across four popularity trend prediction tasks. The experimental results prove that the proposed method performs better than various baselines, including traditional machine learning regression approaches, prior methods for popularity trend prediction, and other GNN models.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

New Energy and Industrial Technology Development Organization

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3