DRL-based dependent task offloading with delay-energy tradeoff in medical image edge computing

Author:

Liu Qi,Tian Zhao,Wang Ning,Lin YusongORCID

Abstract

AbstractTask offloading solves the problem that the computing resources of terminal devices in hospitals are limited by offloading massive radiomics-based medical image diagnosis model (RIDM) tasks to edge servers (ESs). However, sequential offloading decision-making is NP-hard. Representing the dependencies of tasks and developing collaborative computing between ESs have become challenges. In addition, model-free deep reinforcement learning (DRL) has poor sample efficiency and brittleness to hyperparameters. To address these challenges, we propose a distributed collaborative dependent task offloading strategy based on DRL (DCDO-DRL). The objective is to maximize the utility of RIDM tasks, which is a weighted sum of the delay and energy consumption generated by execution. The dependencies of the RIDM task are modeled as a directed acyclic graph (DAG). The sequence prediction of the S2S neural network is adopted to represent the offloading decision process within the DAG. Next, a distributed collaborative processing algorithm is designed on the edge layer to further improve run efficiency. Finally, the DCDO-DRL strategy follows the discrete soft actor-critic method to improve the robustness of the S2S neural network. The numerical results prove the convergence and statistical superiority of the DCDO-DRL strategy. Compared with other algorithms, the DCDO-DRL strategy improves the execution utility of the RIDM task by at least 23.07, 12.77, and 8.51% in the three scenarios.

Funder

National Natural Science Foundation of China

Collaborative Innovation Center of Major Machine Manufacturing in Liaoning

Key Technologies Research and Development Program of Anhui Province

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3