Abstract
AbstractThis paper presents a bi-indicator-based surrogate-assisted evolutionary algorithm (BISAEA) for multi-objective optimization problems (MOPs) with computationally expensive objectives. In BISAEA, a Pareto-based bi-indictor strategy is proposed based on convergence and diversity indicators, where a nondominated sorting approach is adopted to carry out two-objective optimization (convergence and diversity indicators) problems. The radius-based function (RBF) models are used to approximate the objective values. In addition, the proposed algorithm adopts a one-by-one selection strategy to obtain promising samples from new samples for evaluating the true objectives by their angles and Pareto dominance relationship with real non-dominated solutions to improve the diversity. After the comparison with four state-of-the-art surrogate-assisted evolutionary algorithms and three evolutionary algorithms on 76 widely used benchmark problems, BISAEA shows high efficiency and a good balance between convergence and diversity. Finally, BISAEA is applied to the multidisciplinary optimization of blend-wing-body underwater gliders with 30 decision variables and three objectives, and the results demonstrate that BISAEA has superior performance on computationally expensive engineering problems.
Funder
National Natural Science Foundation of China
Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献