TCANet: three-stream coordinate attention network for RGB-D indoor semantic segmentation

Author:

Jia Weikuan,Yan Xingchao,Liu Qiaolian,Zhang Ting,Dong Xishang

Abstract

AbstractSemantic segmentation plays a vital role in indoor scene analysis. Currently, its accuracy is still limited due to the complex conditions of various indoor scenes. In addition, it is difficult to complete this task solely relying on RGB images. Since depth images can provide additional 3D geometric information to RGB images, researchers chose to incorporate depth images for improving the accuracy of indoor semantic segmentation. However, it is still a challenge to effectively fuse the depth information with the RGB images. To address this issue, a three-stream coordinate attention network is proposed. The presented network reconstructs a multi-modal feature fusion module for RGB-D features, which can realize the aggregation of two modal information along the spatial and channel dimensions. Meanwhile, three convolutional neural network branches are used to construct a parallel three-stream structure, which can, respectively, process the RGB features, depth features and combined features. On one hand, the proposed network can preserve the original RGB and depth feature streams, simultaneously. On the other hand, it can also contribute to utilize and propagate the fusion feature flow better. The embedded ASPP module is used to optimize the semantic information in the proposed network, so as to aggregate the feature information of different scales and obtain more accurate features. Experimental results show that the proposed model can reach a state-of-the-art mIoU accuracy of 50.2% on the NYUDv2 dataset and on the more complex SUN-RGBD dataset.

Funder

Natural Science Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3