CenterLoc3D: monocular 3D vehicle localization network for roadside surveillance cameras

Author:

Tang XinyaoORCID,Wang WeiORCID,Song Huansheng,Zhao Chunhui

Abstract

AbstractMonocular 3D vehicle localization is an important task for vehicle behaviour analysis, traffic flow parameter estimation and autonomous driving in Intelligent Transportation System (ITS) and Cooperative Vehicle Infrastructure System (CVIS), which is usually achieved by monocular 3D vehicle detection. However, monocular cameras cannot obtain depth information directly due to the inherent imaging mechanism, resulting in more challenging monocular 3D tasks. Currently, most of the monocular 3D vehicle detection methods still rely on 2D detectors and additional geometric constraint modules to recover 3D vehicle information, which reduces the efficiency. At the same time, most of the research is based on datasets of onboard scenes, instead of roadside perspective, which is limited in large-scale 3D perception. Therefore, we focus on 3D vehicle detection without 2D detectors in roadside scenes. We propose a 3D vehicle localization network CenterLoc3D for roadside monocular cameras, which directly predicts centroid and eight vertexes in image space, and the dimension of 3D bounding boxes without 2D detectors. To improve the precision of 3D vehicle localization, we propose a multi-scale weighted-fusion module and a loss with spatial constraints embedded in CenterLoc3D. Firstly, the transformation matrix between 2D image space and 3D world space is solved by camera calibration. Secondly, vehicle type, centroid, eight vertexes, and the dimension of 3D vehicle bounding boxes are obtained by CenterLoc3D. Finally, centroid in 3D world space can be obtained by camera calibration and CenterLoc3D for 3D vehicle localization. To the best of our knowledge, this is the first application of 3D vehicle localization for roadside monocular cameras. Hence, we also propose a benchmark for this application including a dataset (SVLD-3D), an annotation tool (LabelImg-3D), and evaluation metrics. Through experimental validation, the proposed method achieves high accuracy with $$A{P_{3D}}$$ A P 3 D of 51.30%, average 3D localization precision of 98%, average 3D dimension precision of 85% and real-time performance with FPS of 41.18.

Funder

National Natural Science Foundation of China

Key Research and Development Projects of Shaanxi Province

National Key Research and Development Program of China

Key Research and Development Project of Shaanxi Science and Technology Department

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3